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Quicksilver 

Summary Version 
1.02  (Commit 65091af in the Quicksilver public repo) 

Purpose of Benchmark 
Test performance of Monte Carlo Transport methods. 

Characteristics of Benchmark 
Quicksilver is a proxy app that represents some elements of the Mercury workload by solving a simplified 

dynamic monte carlo particle transport problem.  Quicksilver attempts to replicate the memory access 

patterns, communication patterns, and the branching or divergence of Mercury for problems using 

multigroup cross sections.  OpenMP and MPI are used for parallelization.  A GPU version is available. 

Performance of Quicksilver is likely to be dominated by latency bound table look-ups, a highly 

branchy/divergent code path, and poor vectorization potential. 

A paper showing performance on modern hardware, discussing the representativeness of Quicksilver to 

its parent code Mercury, and describing the changes needed to port the original version of Quicksilver to 

GPUs can be found here. 

Building the Benchmark 
Instructions to build Quicksilver can be found in the Makefile. Quicksilver is a relatively easy to build 

code with no external dependencies (except MPI and OpenMP).  You should be able to build Quicksilver 

on nearly any system by customizing the values of only four variables in the Makefile: 

• CXX  The name of the C++ compiler (with path if necessary) Quicksilver uses C++11 features, 

so a C++11 compliant compiler should be used. 

• CXXFLAGS   Command line switches to pass to the C++ compiler when compiling objects 

*and* when linking the executable. 

• CPPFLAGS   Command line switches to pass to the compiler *only* when compiling objects 

• LDFLAGS    Command line switches to pass to the compiler *only* when linking the executable 

Sample definitions for a number of common systems are provided.   

Quicksilver recognizes a number of pre-processor macros that enable or disable various code features 

such as MPI, OpenMP, etc.  These are described in the Makefile. In particular, the Quicksilver benchmark 

can be built for GPUs with either CUDA or OpenMP 4.5. Instructions to build these versions are given in 

the Makefile.  Unified memory is assumed. 

https://doi.org/10.1109/CLUSTER.2017.121
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The code is of late beta quality with no current known bugs, but no promises that none exist. Performance 

of the code is likely sub-optimal as little work has been done to tune the code for GPUs. 

Running the Benchmark 
Quicksilver’s behavior is controlled by a combination of command line options and an input file.  All of 

the parameters that can be set on the command line can also be set in the input file.   The input file values 

will override the command line.  Run $ qs –h to see documentation on the available command line 

switches.  Documentation of the input file parameters is in preparation. 

The Examples/CORAL2_Benchmark directory contains two benchmark problems.  Only Problem 1 is 

required.  In the Problem1 directory you will find: 

• Coral2_P1_1.inp is 1-node problem, sized for BG/Q  

• Coral2_P1_4096 is a 4096-node problem, sized for BG/Q 

• Coral2_P1.inp is a scale independent problem that contains only the description of the problem 

physics.  When using this file, parameters related to the size of the problem must be specified 

on the command line. 

• P1_64t.sh shows a weak scaling study from 1 to 24576 nodes with 64 threads per node. 

• P1_16t.sh shows a weak scaling study from 1 to 24576 nodes with 16 threads per node. 

• P1_04t.sh shows a weak scaling study from 1 to 24576 nodes with 4 threads per node. 

Outputs 
Quicksilver writes its main diagnostic output to stdout.  This output includes a complete record of the 

parameters that were used for the run.  If you capture this output in a file it will be a valid Quicksilver 

input file that will repeat the run that produced the output. Lines in the output that are unrelated to setting 

problem parameters are automatically ignored by the input parser.   

After the problem parameters and a few lines that report the progress of problem initialization, 

Quicksilver prints one line of output per time step.  These lines contain values of various tallies as well as 

some performance information.  The columns in the output are: 

cycle: The time step number 

start: The number of particles present at the start of the time step 

source: The number of particles created by sources for the time step 

rr: The number of particles destroyed by a “Russian Roulette” algorithm when there are 

more particles than the target number 

split: The number particles created by a splitting algorithm when there are fewer particles than 

the target number 

absorb:  The number of segments that resulted in an absorb reaction 

scatter:  The number of segments that resulted in a scatter reaction 

fission:  The number of segments that resulted in a fission reaction 

produce: The number of particles created by fission reactions 

collision: The sum of absorb, scatter, and fission 

escape: The number of particles that escape the problem domain 



Updated 1-Mar-18 

census: The number of particles that make it to census (the end of the time step) 

num_seg:  The number of segments completed during the time step 

scalar_flux:  The value of the scalar flux tally 

cycleInit: The time spent in cycleInit (in seconds) 

cycleTracking: The time spent in cycleTracking (in seconds) 

cycleFinalize: The time spent in cycleFinalize (in seconds) 

 

After all time steps are complete, the values of various timers are reported along with the Figure of Merit, 

and the results of the verification tests are printed. 

 

Recommendations for Sizing and Scaling Problems 

The benchmark problem is a homogenous domain with reflective boundary conditions, so it can be easily 

scaled to an arbitrary size. 

• cycle_tracking should take between 0.5 and 5 seconds per call.  Choose the number of particles to 

obtain a time in this range. 

• Problems should have at least 1000 mesh elements per rank. 

• You must keep a constant mesh element size by increasing the size of the simulation domain (-X, 

-Y, and -Z) proportionally to the number of mesh elements (-x, -y, and -z).  For Problem 1 the 

mesh element size is one unit.  This means the size of the simulation domain must be equal to the 

number of mesh elements. 

• When weak scaling, increase both the number of mesh elements and the number of particles. 

• You should specify an explicit domain decomposition with the -I, -J, and -K command line 

options (or the xDom, yDom, and zDom parameters).  Quicksilver can create a decomposition 

without these flags, but the load balance will be very poor. 

• To keep the problem load balanced, choose the number of mesh elements in any direction such 

that it is evenly divisible by the number of MPI ranks in that direction.  (I.e., the argument of –x 

should be divisible by the argument of –I.) 

• At the start of each time step, Quicksilver will source a number of new particles equal to 10% of 

the target number of particles.  For best results, chose the number of particles per mesh element 

such that it is divisible by 10.  Quicksilver rounds down the number of source particle per 

elements.  Hence, if the number of particles is set below 10 particles per mesh element 

Quicksilver will source no particles. 

Batch Size Parameters 
Quicksilver divides the total number of particles to be simulated on each rank into some number of 

batches.  MPI communication of particles that cross into the spatial domains of other ranks is performed 

between batches.  This communication is non-blocking to allow the next batch to proceed while the 

communication progresses.  On GPUs, each batch is a single kernel launch.  By default, particles are 

divided into 10 batches.  Increasing the number of batches can provide more opportunities to overlap 

communication and computation, however it can also increase overhead due to kernel launches and data 
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packing and unpacking.  To help optimize Quicksilver’s performance in different regimes we have made 

the number of batches a tunable parameter.  We have found that 10 batches may be too few as the number 

of particles per rank increases. 

There are two methods to set the number of batches.  You can either set the number of batches directly 

using the -b command line switch or, you can specify the number of particles per batch using the -g 

switch.  The latter option may provide more consistent performance when comparing runs with different 

number of particles.  Both the number of batches and the number of particles per batch can be set in the 

input using the nBatches and batchSize parameters.  If you attempt to set both the number of batches and 

the number of particles in a batch the number of particles per batch will take precedence. 

Figure of Merit (FOM) 
The figure of merit for Quicksilver is printed automatically at the end of each run.  It is calculated by 

dividing the total number of Monte Carlo segments executed on all threads on all ranks by the total (wall 

clock) runtime in the cycle_tracking function.  A Monte Carlo segment is counted when a particle crosses 

a mesh facet, undegoes a reaction (scattering, absorption, or fission), or reaches the end of the time step 

(census).  There is no normalization for the number of cores, ranks, etc. so more computing resources will 

produce a larger figure of merit. 

Only cycle_tracking time is included in the FOM so all parts of the code outside of the cycle_tracking 

loop do not contribute to the FOM. 

Benchmark Verification 
Because Quicksilver is a Monte Carlo code it is difficult to rigorously verify.  However, for this 

benchmark we have created some statistical tests that will catch many gross errors.  These tests are 

computed automatically at the end of each run and PASS/FAIL results are printed.  Successful runs 

should PASS all of these tests.  

Figure of Merit Data on BG/Q 
The figure of merit data shown here was calculated with either 1, 4, or 16 MPI ranks per node (and 64, 

16, or 4 OpenMP threads per MPI rank, respectively) using the commands in the scripts provided in the 

Examples/CORAL2_Benchmark/Problem1 directory.  The total number of threads per node is always 64.  

For example, the 32-node case with 64 threads per rank is 

srun -N32 -n32 qs -i Coral2_P1.inp –X64 –Y64 –Z32 –x64 –y64 –z32 -I4 -J4 -

K2 --nParticles 5242880 

Each run uses 4,096 mesh elements per rank and 40 particles per mesh element (163,840 particles per 

node).  Note that the runs with 4 threads per rank (16 ranks per node) have only 256 mesh elements per 

rank and therefore violate the minimum of 1000 mesh elements per rank.   
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 1 Rank per Node 

64 Threads per Rank 

4 Ranks per Node  

16 Threads per Rank 

16 Ranks per Node  

4 Threads per Rank 

Nodes Ranks FOM Ranks FOM Ranks FOM 

1 1 1.292e+06 4 1.266e+06 16 1.215e+06 

2 2 2.508e+06 8 2.465e+06 32 2.351e+06 

4 4 4.832e+06 16 4.683e+06 64 4.531e+06 

8 8 9.207e+06 32 8.933e+06 128 8.878e+06 

16 16 1.764e+07 64 1.725e+07 256 1.751e+07 

32 32 3.374e+07 128 3.398e+07 512 3.475e+07 

64 64 6.386e+07 256 6.671e+07 1024 6.863e+07 

128 128 1.260e+08 512 1.325e+08 2048 1.367e+08 

256 256 2.492e+08 1024 2.630e+08 4192 2.711e+08 

512 512 4.932e+08 2048 5.218e+08 8096 5.380e+08 

1024 1024 9.737e+08 4096 1.032e+09 16384 1.072e+09 

2048 2048 1.936e+09 8192 2.055e+09 32768 2.131e+09 

4096 4096 3.852e+09 16384 4.088e+09 65536 4.228e+09 

8192 8192 7.574e+09 32768 8.083e+09 131072 8.386e+09 

16384 16384 1.507e+10 65536 1.619e+10 262144 1.678e+10 

24576 24576 2.285e+10 98404 2.440e+10 393216 2.511e+10 

 

Change Log 
• 26-Feb-18 Added FOM data for 4 ranks per node and reformatted FOM data into a single table.  

(1 rank per node data was previously Table 1 and 16 ranks per node was Table 2.) 

• 26-Feb-18 Added section to explain batch size parameters (-g and -b switches). 

• 26-Feb-18 Increased tolerance for fluence test from 5% to 6%.  We received multiple reports of 

correctly working simulations with fluence variations between 5% and 6%. 

• 26-Feb-18 Removed nBatches and batchSize parameters from all sample job files.  In every case, 

the values set in the .inp files were the same as the default values.  Removing the values from the 

.inp files allows the values to be set on the command line using the -g and -b command line 

switches. 

• 18-Jan-18 Fixed incorrect units in FOM printout.  The correct value was printed, only the units 

were wrong 

• 18-Jan-18 Added timers to separately report time spent in the tracking kernel and time spent in 

activities related to MPI communication (including MPI calls and packing/unpacking of data). 

• 18-Jan-18 This document updated with a description of Quicksilver output. 

• 22-Jan-18 This document updated with references to published materials. 

Table 1: Figure of merit data for Problem 1 on Vulcan for 1, 4, and 16 ranks per node (weak scaling).  

Note that all cases use 64 threads per node since Vulcan has 16 cores per node with 4 hardware threads 

per core. 
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